Chapter 3: Autoregressive and moving average processes
نویسنده
چکیده
2 Moving average models Definition. The moving average model of order q, or MA(q), is defined to be Xt = t + θ1 t−1 + θ2 t−2 + · · ·+ θq t−q, where t i.i.d. ∼ N(0, σ). Remarks: 1. Without loss of generality, we assume the mean of the process to be zero. 2. Here θ1, . . . , θq (θq 6= 0) are the parameters of the model. 3. Sometimes it suffices to assume that t ∼WN(0, σ). Here we assume normality mainly to simplify our discussion. 4. By defining the moving average operator as Θ(B) = 1 + θ1B + θ2B + · · ·+ θqB We may also write the MA(q) process in the equivalent form Xt = Θ(B) t. Θ(z) is also known as the MA polynomial for z ∈ C. Proposition. Let {Xt} follow the MA(q) model. Then 1. EXt = 0, 2. varXt = (1 + θ 1 + · · ·+ θ q) σ, ∗Please send any comments and corrections to [email protected]. †Updated on 28 Jan.
منابع مشابه
Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملStructure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملDiscussion Paper No. 537 COMPARING TESTS OF AUTOREGRESSIVE VERSUS MOVING AVERAGE ERRORS IN REGRESSION MODELS USING BAHADUR’S ASYMPTOTIC RELATIVE EFFICIENCY
The purpose of this paper is to use Bahadur’s asymptotic relative efficiency measure to compare the performance of various tests of autoregressive (AR) versus moving average (MA) error processes in regression models. Tests to be examined include non-nested procedures of the models against each other, and classical procedures based upon testing both the AR and MA error processes against the more...
متن کاملDierential Geometry of Autoregressive Fractionally Integrated Moving Average Models
The di erential geometry of autoregressive fractionally integrated moving average processes is developed. Properties of Toeplitz forms associated with the spectral density functions of these long memory processes are used to compute the geometric quantities. The role of these geometric quantities on the asymptotic bias of the maximum likelihood estimates of the model parameters and on the Bartl...
متن کاملClosure of Linear Processes
We consider the sets of moving-average and autoregressive processes and study their closures under the Mallows metric and the total variation convergence on nite dimensional distributions. These closures are unexpectedly large, containing nonergodic processes which are Poisson sums of i.i.d. copies from a stationary process. The presence of these non-ergodic Poisson sum processes has immediate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015